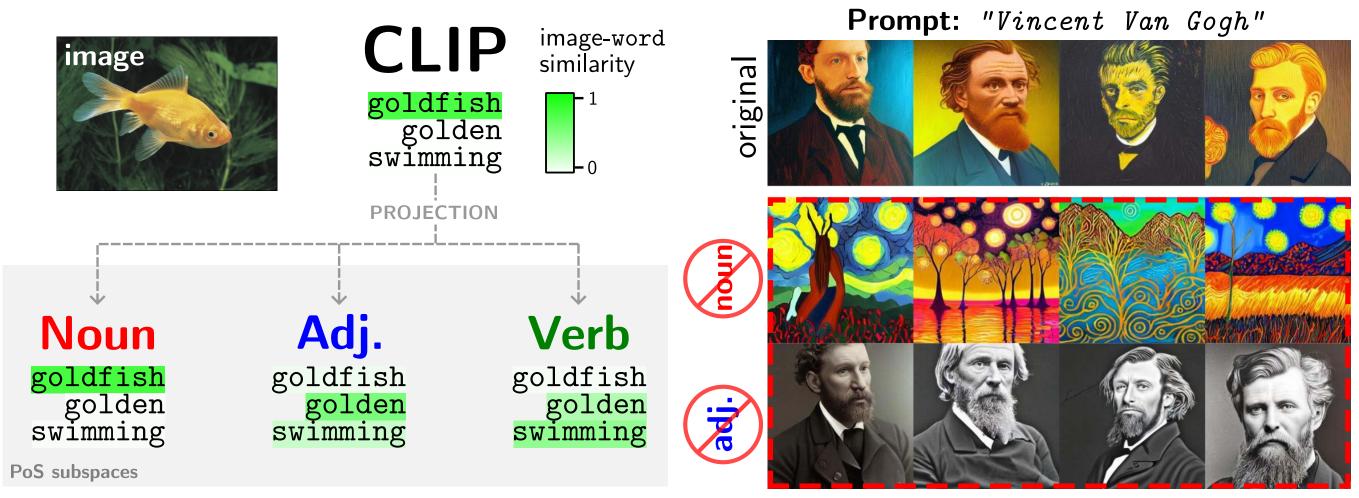


Yannis Panagakis^{2,3} James Oldfield¹ Christos Tzelepis¹

¹Queen Mary University of London



Summary

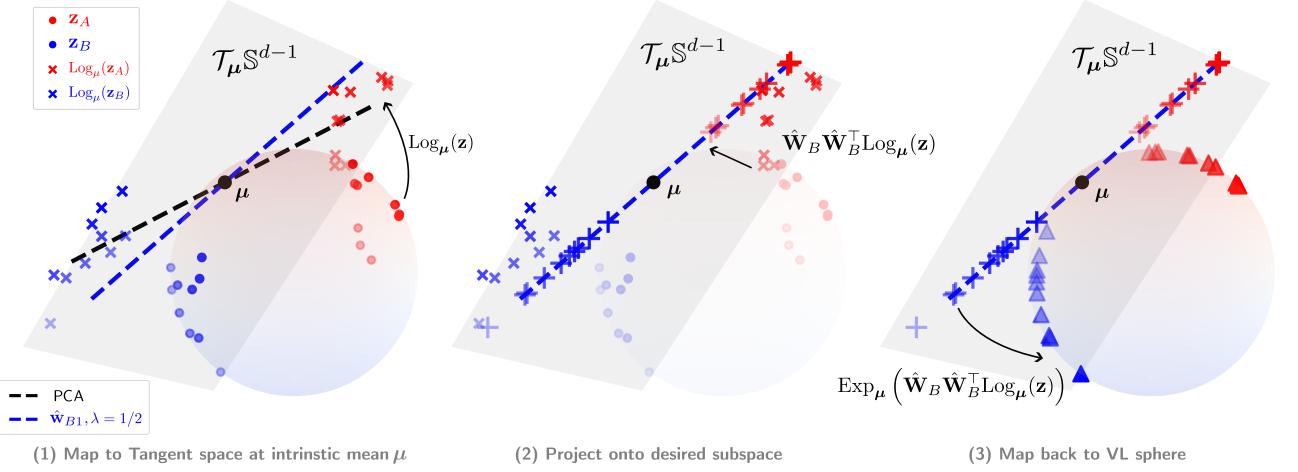
CLIP represents multiple visual properties in its embedding [2]. We leverage the association between PoS and specific visual modes of variation (e.g. nouns relate to objects, adjectives their appearance) to learn geometry-aware subspaces that better separate the constituent components.

Method

We learn PoS-specific subspaces in the joint vision-language space: $\mathbf{W}_{i} = \arg \max \left\{ (1 - \lambda) || \mathbf{W}_{i}^{\top} \mathbf{X}_{i} ||_{F}^{2} - \sum \lambda || \mathbf{W}_{i}^{\top} \mathbf{X}_{j} ||_{F}^{2} \right\},\$ $\mathbf{W}_i^{ op}\mathbf{W}_i = \mathbf{I}_k$

where $\mathbf{X}_i \in \mathbb{R}^{d \times n}$ contain in their columns n CLIP embeddings of examples of PoS i (solution is given in closed-form).

Isolating/removing representations visually associated with PoS *i* is then achieved by projecting onto the subspaces/their orthogonal complements, respectively.

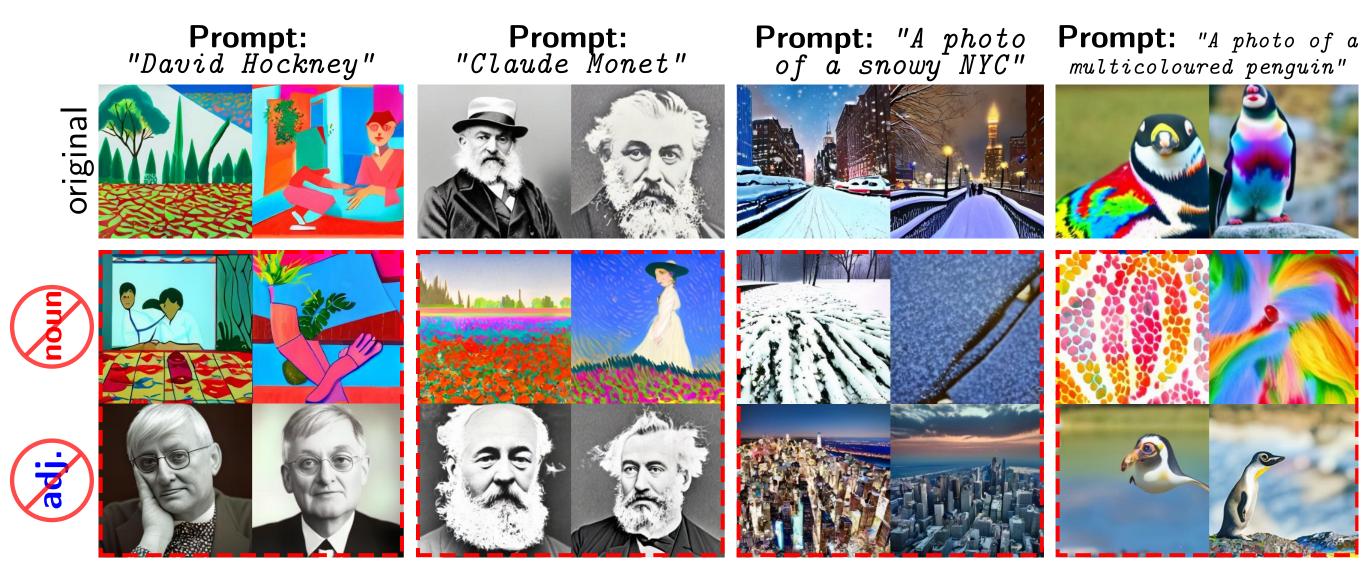


Geometry-aware subspaces are learnt in the tangent space to CLIP's VL hypersphere's intrinsic mean-better respecting the geometry of the manifold on which the representations lie [1].

Parts of Speech–Grounded Subspaces in Vision-Language Models

²National and Kapodistrian University of Athens

We visualise the ability of subspace orth. complement projection $(\mathbf{I}_d - \mathbf{W}_i \mathbf{W}_i^{\top})\mathbf{x}$ to remove visual variation from the CLIP embeddings associated with a specific PoS with LAION's CLIP-based T2IM Paella [3]:



Style-blocking projections

By removing style-based variation from the CLIP representations, the projection onto the orth. complement of the adjective subspace provides a way to block the imitation of artists' styles:

References

P.T. Fletcher et al. "Principal geodesic analysis for the study of nonlinear statistics of shape". [1] In: IEEE Trans. Med. Imag. 23.8 (2004), pp. 995–1005. Sachit Menon et al. "Task Bias in Vision-Language Models". In: ArXiv (2022). [2] Dominic Rampas et al. "Fast Text-Conditional Discrete Denoising on Vector-Quantized Latent Spaces". In: ArXiv (2022).

[3]

Mihalis A. Nicolaou⁴

³Archimedes/Athena RC

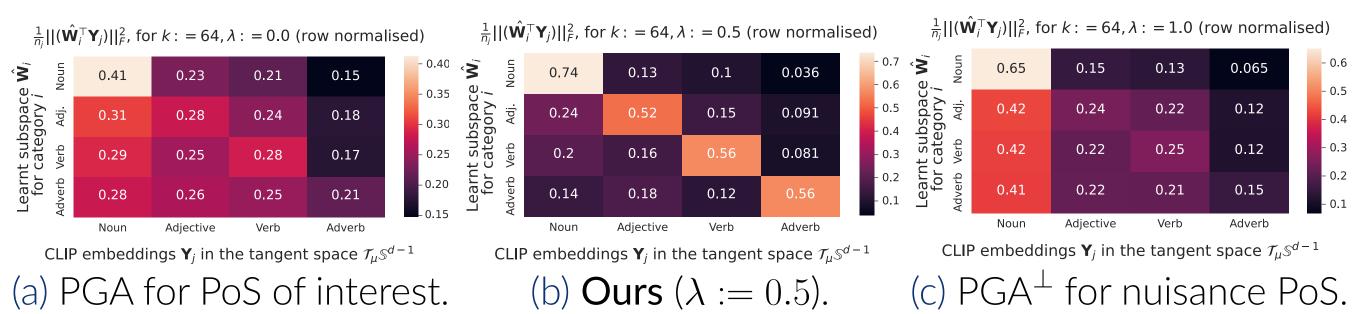
⁴The Cyprus Institute

Custom theme subspaces

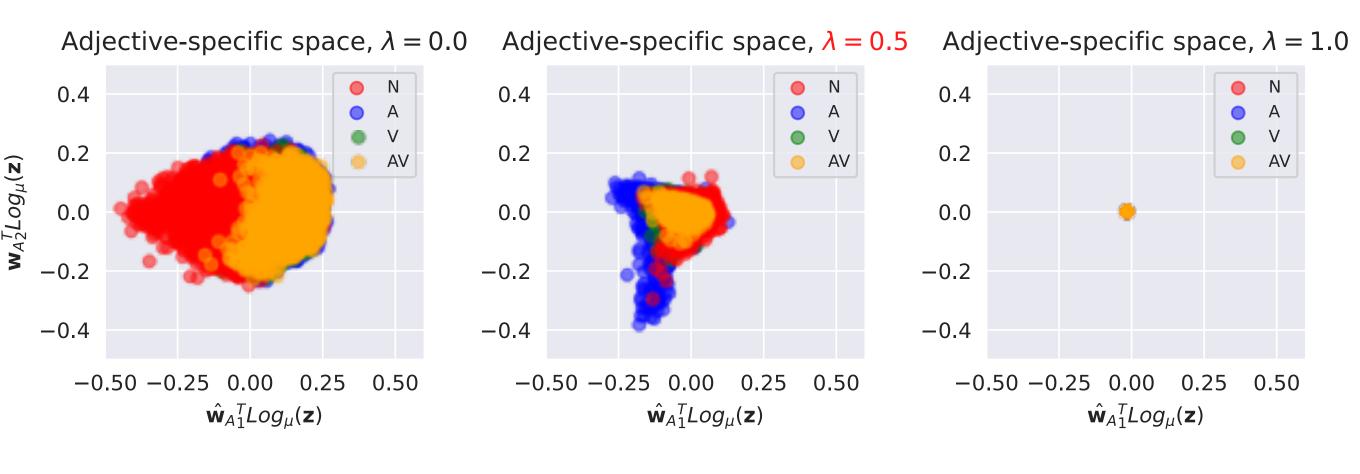
The main objective also allows one to learn subspaces corresponding to more specific visual themes (supervised with a dictionary of custom phrases), and thus provides a more targeted way to remove specific visual concepts (e.g. 'gore'):

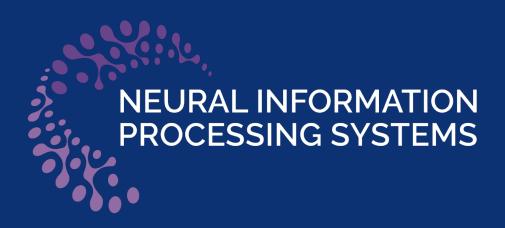
Quantitative & ablations

The quantity $\frac{1}{n_i} ||\mathbf{W}_i^{\top} \mathbf{X}_j||_F^2$ measures the presence of PoS j's data in PoS *i*'s subspace:



A choice of $\lambda := 0.5$ provides a reasonable balance between maximising the variance for the target PoS and killing that of the remaining:





Ioannis Patras¹