

Figure 1. Overview of our unsupervised factorisation of a dataset of synthetic samples' feature maps: the parts (non-negative) and appearance factors are learnt in the spatial and channel modes respectively; combinations of which are combined with the outer product and sample-specific coefficients.

Overview

We propose an unsupervised factorisation of a dataset of pretrained generator's intermediate feature maps. This provides an intuitive separation into representations of an image's parts and appearances. The learnt semantic factors allow for:

- Local image editing: precise pixel-level control not facilitated by the SOTA.
- Context-aware object removal: a single appearance factor removes objects in a scene.
- **Concept localization**: the appearance factors localize semantic concepts in the image, such as the sky, skin, or background.

Local image editing

To locally modify an image i at region k with the j^{th} appearance with desired magnitude $\alpha \in \mathbb{R}$, we compute the forward pass from layer l onwards in the generator with $G_{[l:]}(\mathbf{Z}_i + \alpha \mathbf{a}_j \mathbf{p}_k^{\top})$.

Unlike the SOTA [4, 5, 3], the proposed method requires neither manually defined ROIs, nor semantic masks, and is orders of magnitude faster to train.

Modified appearance Original Part(s)

Original Part(s) **Modified appearance**

Concept localization

- The columns of $\mathbf{A}\mathbf{A}^{\top}\mathbf{Z}_i = \mathbf{Z}_i \in \mathbb{R}^{C \times S}$ contain the activations at each of the S spatial positions in sample i's feature maps.
- $\mathbf{A}^{\top}\mathbf{Z}_i \in \mathbb{R}^{R_C \times S}$, viewed as a change of basis (when $R_C = C$), tells us 'how much' each of the appearance factors is present at the Sspatial positions. This interpretation readily localizes the learnt concepts in the images:

Method

Let $\mathbf{Z}_i \in \mathbb{R}^{C \times S}$ be sample *i*'s feature maps with their C-dimensional channel fibers stacked along the columns:

We write each sample's feature maps as its own combination of shared appearance and **nonnegative** parts factors $\mathbf{A} \in \mathbb{R}^{C \times R_C}$ and $\mathbf{P} \in$ $\mathbb{R}^{S \times R_S}$ respectively:

 $\mathbf{Z}_i = \mathbf{A} \mathbf{\Lambda}_i \mathbf{P}^ op$

BigGAN

StyleGAN2

Context-aware object removal

We find the decomposition frequently learns an appearance factor \mathbf{a}_b that controls a high-level 'background' concept in all 5 generator architectures studied.

 $\lambda_{i11} \ \lambda_{i12} \ \cdots \ \left[\begin{array}{c} -\mathbf{p}_1^{\top} \ -\mathbf{p}_1^{\top} \end{array} \right]$ Using \mathbf{a}_b (learnt for a particular generator and $\mathbf{b}_1^{\top} \ \mathbf{b}_2^{\top} \ \mathbf{b}_3^{\top} \ \mathbf{b}_4^{\top} \ \mathbf$ by simply updating the feature maps with $\alpha \mathbf{a}_b \mathbf{p}_k^{\top}$ as above.

Quantitative results

Quantifying local image editing precision: the norm of the difference between the edited and original images outside the ROI, divided by the same quantity inside the ROI:

Table 1. ROIR (\downarrow) of for 10k FFHQ samples per local edit.

	Eyes	Nose	Open mouth	Smile
GANSpace [1]	2.80±1.22	4.89±2.11	3.25±1.33	2.44±0.89
SeFa [2]	5.01 ± 1.90	6.89±3.04	3.45±1.12	5.04±2.22
StyleSpace [3]	1.26 ± 0.70	1.70±0.82	1.24±0.44	2.06±1.62
LowRankGAN [4]	1.78±0.59	5.07 ± 2.06	1.82±0.60	2.31±0.76
ReSeFa [5]	2.21±0.85	2.92 ± 1.29	1.69±0.65	1.87±0.75
Ours	$1.04{\pm}0.33$	$1.17{\pm}0.44$	$1.04{\pm}0.39$	$1.05 {\pm} 0.38$

References

- Erik Härkönen et al. "GANSpace: Discovering Interpretable GAN Controls". In: NeurIPS. 2020.
- Yujun Shen and Bolei Zhou. "Closed-Form Factorization of La-

The global factor matrices are learnt by formulating and solving the following constrained optimisation problem:

Refinement: if desired, one can subsequently optimise for sample-specific parts factors \mathbf{P}_i for particular images/datasets lacking alignment.

Ablations

tent Semantics in GANs". In: CVPR. 2021.

- Zongze Wu et al. "StyleSpace analysis: Disentangled controls [3] for stylegan image generation". In: CVPR. 2021.
- Jiapeng Zhu et al. "Low-Rank Subspaces in GANs". In: NeurIPS. [4] 2021.
- Jiapeng Zhu et al. "Region-Based Semantic Factorization in GANs". In: ICML. 2022.

http://eecs.qmul.ac.uk/~jo001/PandA/

j.a.oldfield@qmul.ac.uk