

PandA: Unsupervised Learning of Parts and Appearances in the Feature Maps of GANs

James Oldfield ¹

Christos Tzelepis 1

Yannis Panagakis²

Mihalis A. Nicolaou³

Ioannis Patras 1

¹Queen Mary University of London

²University of Athens

³The Cyprus Institute

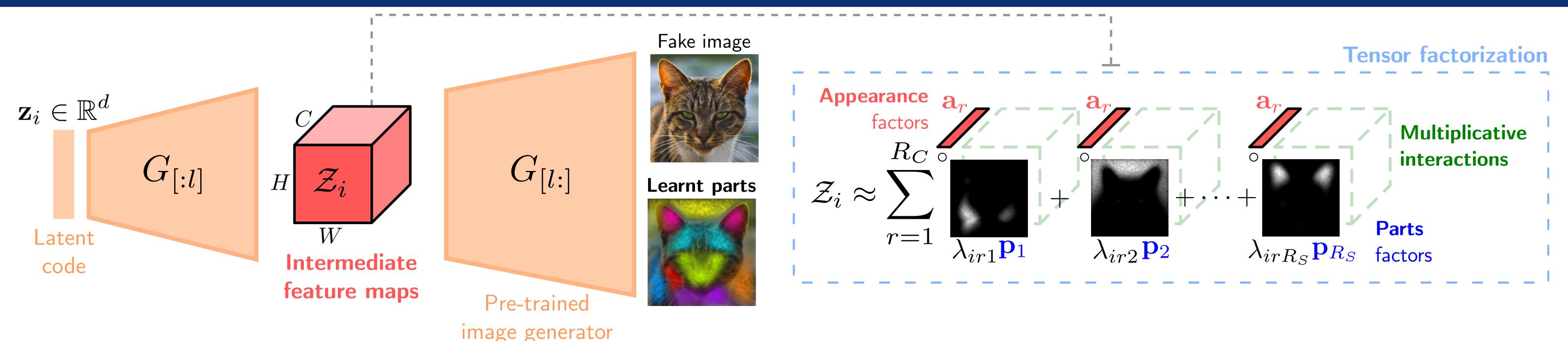


Figure 1. Overview of our unsupervised factorisation of a dataset of synthetic samples' feature maps: the parts (non-negative) and appearance factors are learnt in the spatial and channel modes respectively; combinations of which are combined with the outer product and sample-specific coefficients.

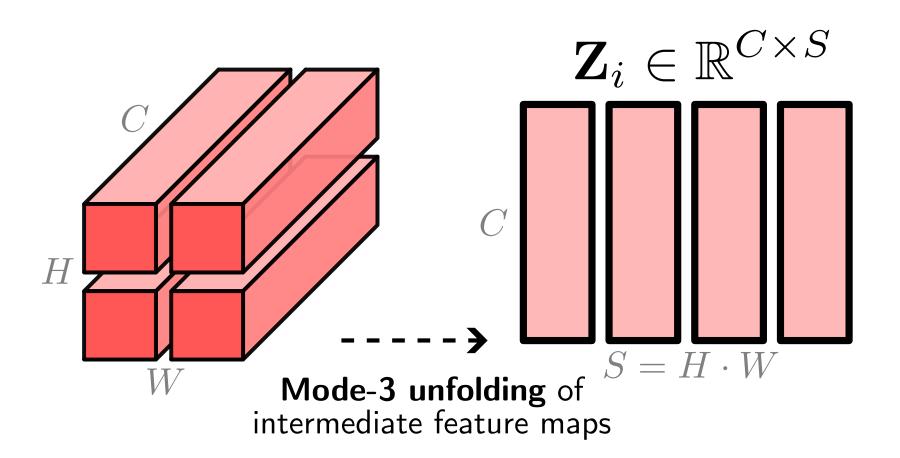
Overview

We propose an unsupervised factorisation of a dataset of pretrained generator's intermediate feature maps. This provides an intuitive separation into representations of an image's parts and appearances. The learnt semantic factors allow for:

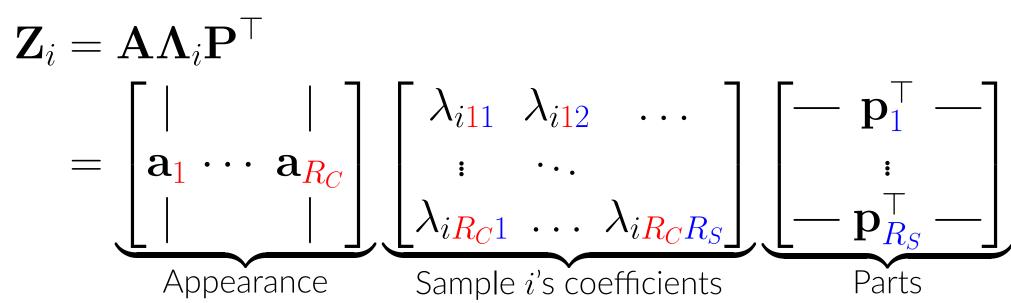
- Local image editing: precise pixel-level control not facilitated by the SOTA.
- Context-aware object removal: a single appearance factor removes objects in a scene.
- Concept localization: the appearance factors localize semantic concepts in the image, such as the sky, skin, or background.

Method

Let $\mathbf{Z}_i \in \mathbb{R}^{C \times S}$ be sample *i*'s feature maps with their *C*-dimensional channel fibers stacked along the columns:



We write each sample's feature maps as its own combination of shared appearance and **non-negative** parts factors $\mathbf{A} \in \mathbb{R}^{C \times R_C}$ and $\mathbf{P} \in \mathbb{R}^{S \times R_S}$ respectively:



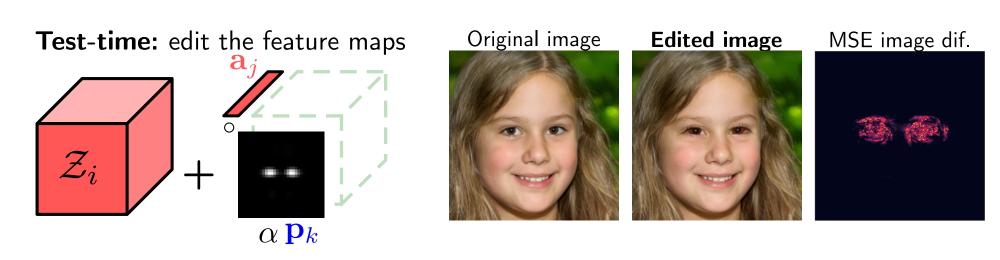
The global factor matrices are learnt by formulating and solving the following constrained optimisation problem:

$$\min_{\mathbf{A},\mathbf{P}} \sum_{i=1}^{N} ||\mathbf{Z}_i - \mathbf{A} (\mathbf{A}^{\top} \mathbf{Z}_i \mathbf{P}) \mathbf{P}^{\top}||_F^2 \quad \text{s.t. } \mathbf{P} \geq \mathbf{0}.$$

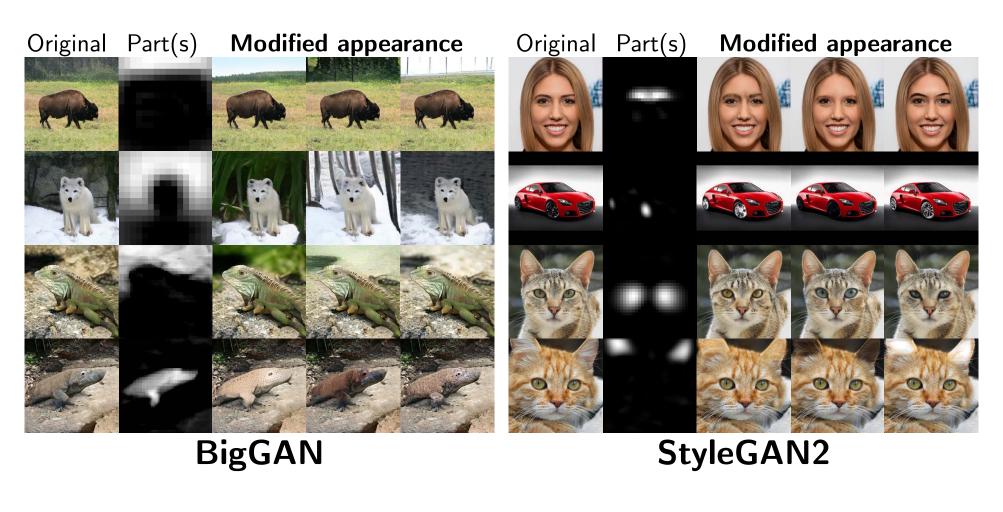
Refinement: if desired, one can subsequently optimise for sample-specific parts factors $\tilde{\mathbf{P}}_i$ for particular images/datasets lacking alignment.

Local image editing

To locally modify an image i at region k with the j^{th} appearance with desired magnitude $\alpha \in \mathbb{R}$, we compute the forward pass from layer l onwards in the generator with $G_{[l:]}(\mathbf{Z}_i + \alpha \mathbf{a}_j \mathbf{p}_k^\top)$.

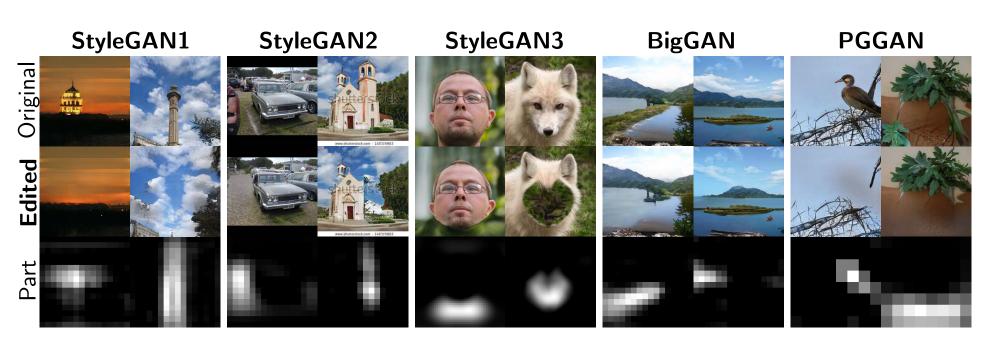


Unlike the SOTA [4, 5, 3], the proposed method requires neither manually defined ROIs, nor semantic masks, and is orders of magnitude faster to train.

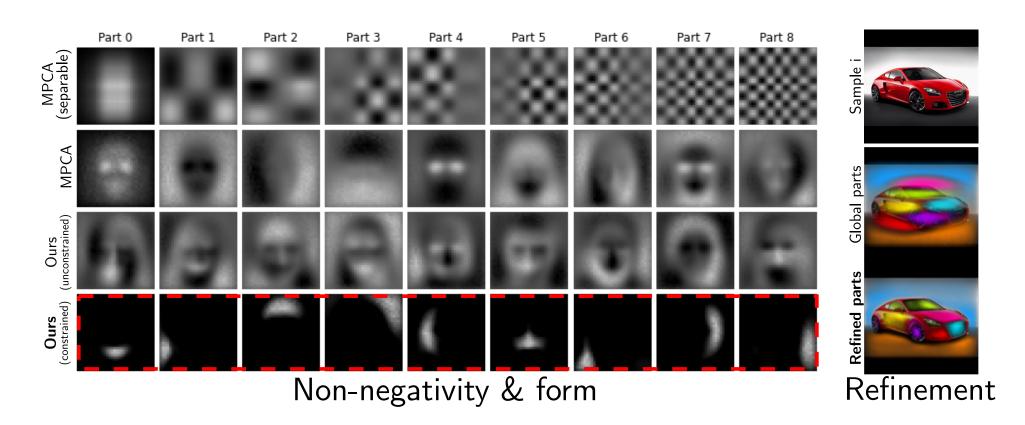


Context-aware object removal

We find the decomposition frequently learns an appearance factor \mathbf{a}_b that controls a high-level 'background' concept in all 5 generator architectures studied.

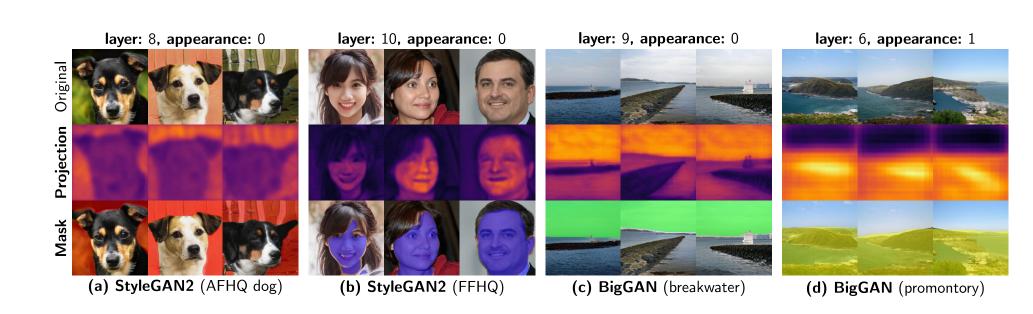


Ablations



Concept localization

- The columns of $\mathbf{A}\mathbf{A}^{\top}\mathbf{Z}_{i} = \mathbf{Z}_{i} \in \mathbb{R}^{C \times S}$ contain the activations at each of the S spatial positions in sample i's feature maps.
- $\mathbf{A}^{\top}\mathbf{Z}_{i} \in \mathbb{R}^{R_{C} \times S}$, viewed as a change of basis (when $R_{C} = C$), tells us 'how much' each of the appearance factors is present at the S spatial positions. This interpretation readily localizes the learnt concepts in the images:



Quantitative results

Quantifying local image editing precision: the norm of the difference between the edited and original images outside the ROI, divided by the same quantity inside the ROI:

Table 1. ROIR (1) of for 10k FFHQ samples per local edit.

	Eyes	Nose	Open mouth	Smile
GANSpace [1]	2.80±1.22	4.89±2.11	3.25±1.33	2.44±0.89
SeFa [2]	5.01 ± 1.90	6.89 ± 3.04	3.45 ± 1.12	5.04 ± 2.22
StyleSpace [3]	1.26 ± 0.70	1.70 ± 0.82	1.24 ± 0.44	2.06 ± 1.62
LowRankGAN [4]	1.78 ± 0.59	5.07 ± 2.06	1.82 ± 0.60	2.31 ± 0.76
ReSeFa [5]	2.21 ± 0.85	2.92 ± 1.29	1.69 ± 0.65	1.87 ± 0.75
Ours	1.04 ± 0.33	1.17 ± 0.44	1.04 ± 0.39	1.05 ± 0.38

References

- [1] Erik Härkönen et al. "GANSpace: Discovering Interpretable GAN Controls". In: *NeurIPS*. 2020.
- Yujun Shen and Bolei Zhou. "Closed-Form Factorization of Latent Semantics in GANs". In: CVPR. 2021.
- Zongze Wu et al. "StyleSpace analysis: Disentangled controls for stylegan image generation". In: CVPR. 2021.
- [4] Jiapeng Zhu et al. "Low-Rank Subspaces in GANs". In: *NeurIPS*. 2021.
- [5] Jiapeng Zhu et al. "Region-Based Semantic Factorization in GANs". In: *ICML*. 2022.

SCAN ME for project page